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Slow oscillations in an ocean of varying depth 
Part 2. Islands and seamounts 

By P. B. RHINES 
Department of Applied Mathematics and Theoretical Physics, 

University of Cambridget 

(Received 6 May 1968 and in revised form 4 October 1968) 

We consider slow oscillations trapped about axisymmetric islands and sea- 
mounts. w is in the range 5 612 (w is the frequency divided by f, the Coriolis 
parameter, and 6 the fractional change in depth). The periods, for example, are 
N > 2.4 days for an island with a sloping ‘skirt ’, h oc d, where h is the depth and 
( r , @  are polar co-ordinates in the plane tangent to the mean sea surface. 
Energy leaks slowly away from the topography in Rossby waves. In  the limiting 
case of a cylindrical island with vertical walls there are no such trapped motions, 
but incident Rossby waves are scattered anisotropically. If y, the ratio of the 
island radius, a, to the Rossby wavelength, is small, the scattering cross-section 
N y3a. The free oscillations at seamounts and islands with skirts allow much 
stronger scattering (with cross-section N sly, - a wavelength), when one of 
their frequencies is near that of the incident wave. 

The theory suggests that measurements of Rossby waves will be possible at  
small islands, but that the many local oscillations in the same frequency range 
will add some confusion. 

1. Introduction 
Slow oceanic oscillations with bottom topography were considered by the 

author (1969, hereafter referred to as I). The p-effect and the stretching of vortex 
lines due to motion through changes in depth were both included, with the 
restriction that the radius of curvature of the depth contours be much larger 
than the scale of the waves. Here we consider the other extreme, where the 
radius of curvature is small. Solutions appropriate to islands and seamounts are 
found, and matched to Rossby waves in a constant depth exterior. 

2. Free oscillations 
A stream function for the horizontal mass-flux, defined by 

kAv$ = hU, 

satisfies the vorticity equation, derived in I: 

t Present address : Department of Meteorology, Massachusetts Institute of Technology. 
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fc is a vertical (ramdial) unit vector, u the horizontal velocity, t the time and h the 
depth. 

Over topography h = h(r) restricted to  a small region, 0 < r 6 a, we may 
neglect variations off and find an equation correct to O( y )  ( y  = ap/wf0 is the ratio 
of a to a typical Rossby wavelength), 

where $ = $exp (- iwf,t) ,  f = fo+py. x and y are Cartesian co-ordinates 
directed east and north, respectively. 

When 5 (z 0) on the average we may expect wave-like solutions with phase 
rh 

in the northern hemisphere, just as the phase velo- 
clockwise 
counter -clockwise 

moving 

city of Rossby waves is always to the west. 

A seamount 
Topography of the form 

h = Hexp{S(r/a)2} ( r  < a) (subscript 1) 

= Hexp (6) ( r  > a) (subscript 2 )  

is taken to model a seamount. It is paraboloidal near the origin, but slopes more 
steeply as the r becomes large. Equation (2.1) becomes 

G1 ( r )  = +-1 exp { -  is^}. 

$1 = hh-4  

A change of the dependent variable to 

moves the third term to the zeroth derivative 

With error of order Sw/2s the last term may be neglected, leaving a Bessel 
equation. If the depth changes by a factor of 10 from r = 0 to r = a, 6 is less than 
2.5, and this is a good approximation even then, for the lower frequency modes. 
The free surface has been taken to be rigid, since f 2a2/gh is very small as long as 
y is. 

The interior solution is 
- 
$1 = ( H  exp {~ ( r la )2 } )4  exP {i (88 - wfot)) $1 ( r ) ,  

m m 

0 1 
$1 = C c-, exp { - i s@} J, (ar) + C c, exp {;SO} Is  (ar),  
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where a(s) implies the dispersion relation 

The phase at  a of waves of given o, s and 6 is independent of a ,  which will simplify 
the matching procedure. 

For r > a,  the solutions are Rossby waves: 

g2 = exp { - i~x} 
W 

exp {ise} D8Hi;2’(Kr) ( K  = .la.) 
--a) 

This Hankel function represents a radially outward propagation of energy, 
although the phase moves inwards; as K r - t c n  

Bi2)(Kr) N - (2/n~r)+exp { - iKr + &in(s + i)}. 
Unless there is an outer boundary, motion near the origin must, therefore, decay 
with time to conserve energy.$ 

At the discontinuity in slope the horizontal velocities of the two solutions are 
set equal, as in I. That is 

$1 = ( H  exp {W $1 = $2, 

$1 7 = (Hexp { J P [ A , T +  ( 6 / 4  $11 = $2,r 

at r = a. 
The neglect of p in the interior causes errors of order y there. No inconsistency 

arises in retaining p outside, where it has room to act; for y < 1 the outer solu- 
tions behave near r = a like the same harmonic functions, r-ISIexp{isO}, as if 
p were identically zero. To this order, then, the slow decay of the solutions is 
unimportant, the outer solutions having become very small by the radius at 
which they become oscillatory. 

Clearly the right-hand sides of (2.2) are not in separable form; each exp {isO} 
term is multiplied by all the Ds’s. If, however, the velocities are of the same or 
increasing order in y, with increasing s, the leaking that p induces between the 
modes is small. Keeping just two terms of exp { - i ~ x }  for example, 

Then $, is 
exp { - i ~ x }  w 1 - iy cos 8. 

I [ - ;(In y - 0.12) Do + n(D1 - 0-J + . . . 
2i y 

=y = - D, - -(In y - 0.12) Do+ + exp { - iO} [.. .] + .. .. 

t This solution, with minor modifications, describes the low frequency oscillations of 
fluid rotating in a cylinder with a flat bottom and free surface (the use of equation (1.2) 
of I improves the result). 

3 The author has benefited from a thorough analysis by Longuet-Higgins (1967) of 
‘almost-trapped’ gravity waves over a seamount, which have some features in common 
with these lower frequency motions. 

13 Fluid Mech. 37 
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If 

D, % y21n yD0, 

the coupling may be neglected in (2.2). Including the effect of neighbowing 
azimuthal components, $,,, in (2.2) is 

1 2i 2 2i 
ma Y Y ( ia) [yln ~ D , , + - D , +  -D,+ ... + .... $2,r = --Do+exp{iO} -- 

The 8th component involves just D, under the same conditions. The coupling 
will thus be weaker for the lower s-modes. Do is a special case, however, since the 
topography is ineffective when there are no radial velocities. 

The equations are now the same as if the modulation exp { - im} had been 
neglected in (2.2), except for the isotropic balance. In  practice we are only 
interested in the fist few modes. 

With these conditions satisfied there will be solutions for Ds and c, only if 
the determinant of the matching equations vanishes. This gives the tran- 
scendental relations 

- or 

and 

For a sufficiently small seamount, S < aa, 

J[,I-,(aa) = 0 (8 < 0). 

There are no roots for s > 0, and the isotropic mode is largely forced by c + ~ .  
The frequency that results is plotted in figure 1 against the height of the sea- 

mount (it is independent of a), for several azimuthal modes. There is an almost 
linear increase in w with 6, to quite high values (for a quasigeostrophic wave); 
the appearance of high frequencies near such topography could represent either 
these local oscillations or a very long Rossby wave. 

As the number of radial nodes increases the frequency drops only slowly, 
because the mean angle at which the fluid crosses contours does not change 
rapidly. When circular nodes are present, however, this angle and the frequency 
are greatly reduced. 

Viscosity and non-linearities will probably be destructive to the modes with 
circular nodes. There is, therefore, little reason to calculate the exact rate of 
inviscid decay due to radiation (the smallness of y for the faster oscillations makes 
it less important for these cases also). 

With Longuet-Higgins’ (1967) gravity waves over a circular cylinder, the 
trapping mechanism is somewhat weaker than for quasigeostrophic waves, 
requiring a great contrast in depths for the decay rate to be small. If this same 
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depth profile is used instead of the ‘exponential paraboloid’ the principal quasi- 
geostrophic modes merge close to the frequency 

No circular nodes 
Over the seamount - 

where hl is the depth over the profile. This value approximates well the conglo- 
meration of lower modes in the previous problem; see figure 1. It is also the same 
as the frequency of waves trapped along a straight step in the ocean floor. 

I I  I I I I I 
1 .o 2.0 3.0 4.0 5.0 

es 

FIGURE 1. Form of the oscillations above a seamount, and the dependence of frequency 
on the height, H 8. The frequency is also given for topography in the form of a circular 
cylinder (dashed line). 

An island with a ‘skirt’ 

Most tidal measurements are made near islands or a t  a coast. It has been 
suggested [Longuet-Higgins 1966; Rattray & Charnel1 19661 that the low 
frequency spectral content of the records from islands may be due to Rossby 
waves. Following the ideas of the previous section we present an alternative 
possibility (for regions away from the equator) in terms of oscillations almost 
trapped about a symmetrical island with a sloping ‘skirt ’. 

The analysis is almost the same as before, but with a different depth profle. 
13-2 
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When y = Ka, 4 1, where a2 is the radius at which the topography intersects 
the uniform depth exterior, J3 may be neglected over the slopes. Since 

if y is small, the surface will be considered rigid. 
For any of the family of profiles 

c 

h = (i) (r < a2), 

the equation 

becomes (2.3) 

This has the solution $, = A r P l +  A ' r P 2 ,  

The motions are independent of the scales H and a2. 
Phillips (1966) has considered the paraboloidal member of this set, C = 2 ,  

which also yields the high frequency Kelvin and inertial-gravitational waves 
without approximation. His object was to study 'model' Rossby waves in dctail. 
Successful experiments were performed by Ibbetson [see the above paper and 
Ibbetson & Phillips (1967)l. 

We choose C = 4 to represent a gradual increase in depth to r = a2, where the 
slope is discontinuous. Outside this radius the sea-bed is taken to be level, h := H .  
If the depth at r = a, is 200 m, for example, it reaches 2000 m a t  r = 10a,. 

The solutions are oscillatory in space if p is complex. 

$, = r p r  exp {ip, In r )  ( p  = pr + i p ~ .  
At the origin the dynamic effect hr/rh becomes infinite, giving the solutions 
unbounded variation there. We exclude the origin, however, with a cylindrical 
island whose walls stand at r = a,. The boundary condition at  a, is 

(the isotropic mode has no radial velocity component, and hence is insignificant). 
This should be valid if the impedance to exterior motions of the shallow shelf 
about a real island is sufficiently great. 

The interior solution is thus 

$, = A ( Y P ~ - ~ P ~ - w P ~ )  

Beyond r = a2, J3 is included. The appropriate solution is again 

(al < r < a2). 

m 

$2 = exp { - i m }  ;I: Dsexp{isO}H~z)(~~) ( r  > a&, 
- w  
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a Rossby wave carrying energy outwards. With y < 1, g2 acts like a separable 
harmonic function near the topography: 

The decay of the oscillations appears only at  the next order in y, so the trapping 
is efficient. 

From the matching of fi and gr at r = a2 it follows that 

F o r X = &  

With al/a2 < 1 the choice p1 > p 2  for purely real solutions of p1,p2 implies 

< 1 while > 1, 
Is I +P2 

which contradicts (2.5). Hence $ is always oscillatory with 

pl =pg  = $+ip4; ipi = 
and s < 0 for non-trivial solutions: the phase moves clockwise. The solution 
over the skirt is the sum of an incoming and an outgoing wave, 

g1 = Adsin (p4h  (r/al)). (2.6) 

(The incoming wave does not require an energy source at 03; merely a reflexion 
at  T = a2.) 

The condition (2.5) may now be written 
Y 

where 

This is a simple transcendental equation for pi and hence the frequency. The 
roots are plotted for s = - 1,  - 2 in figure 2 on the dispersion curve 

6 = Pi In (%/all. 

which is similar in form to that of plane Rossby waves; pi acts as a radial wave- 
number, For given a2/al each successively lower frequency mode gains one more 
node about the island. The highest frequencies arise when $ has no such nodes; 
for s = - 1 this is 

w = 0.41, for a2/al = lo3 (a period of 2.4 days), 

w = 0.36, for a2/al = lo2 (a period of 2.8 days), 

w = 0.23, for a2/al = 10 (a period of 4.3 days), 
a t  latitude 30". 
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The various azimuthal modes are more greatly separated in frequency than in 
the case of a seamount. 

The form of $ is shown in figure 3 for s = - 1 and two circular nodes. The fee-  
surface displacement, r ] ,  is given by (2.6) with d replaced by r-&, and hence the 

0 1 2 3 4 5 

lPil 

FIGURE 2. Dispersion curves for waves about an island with a skirt. a, and a2 arc) the 
radii of the cylindrical island, and the outer edge of the skirt, respectively. 0 ,  a2/al = 103; 
A, az/a, = 102; EI, a2/al = 10. 

600 r 

FIGURE 3. Form of the stream function for s = - 1, two circular nodes. The velocities are 
greatest near the island. 

'run-up' of a single mode amplifies r , ~  by a factor of order (az/al)' over its value at  
T = uz. The circumferential velocity, u, is a factor N (a&,)* more intense near 
the island; this could be quite considerable. For other profiles h = H(r/u,)" the 
run-up enhances r , ~  and u by N (uz/ul)@ and - ( U ~ / U , ) ~ + @  respectively. 

Practical considerations favour the appearance of the lower modes; they will 
be the most responsive to large-scale forcing effects, the least subject to distortion 
by irregularities in the topography, and the least disturbed by non-linearities 
and friction. 
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3. Scattering of Rossby waves 
Cylindrical island 

Just as a ridge tends to reflect an incident Rossby wave, an isolated seamount 
or island in a field of waves will produce scattering, and the motion over the 
slopes can be described by the eigenfunctions just calculated. 

To demonstrate some of the peculiarities that the anisotropy due to /3 gives 
the problem, we first treat a simpler situation: the scattering due to an island in 
the form of a right circular cylinder (without a skirt). 

The equation is that of simple Rossby waves, 

(V2 + tc2) $2 = 0, P2 = #2 exp { - i (KX + ufot)}, (3.1) 

with the spatial dependence obeying 

3 = A ,  a constant, 

on r = a; that is, & = A exp ( i ~ a  cos 0) (r = a). (3.2) 

If we were to set A equal to zero the problem would be identical to that of 
electromagnetic waves incident on a conducting cylinder, when the electric 
vector is parallel to the cylinder axis. If the radius were much smaller than a 
wavelength the scattering would be isotropic, yet even as y + 0 it would be quite 
strong. For acoustic waves in the presence of a rigid cylinder ($,,, = 0) the 
incident field adjusts more easily to the boundary. The scattering for small 
radius is weaker, and disappears with y. The isotropic and cos8 components 
dominate. 

To determine A we note that the field due to an oscillating, vortex-like motion 
centred on the origin would not disturb either the inviscid boundary condition 
or the condition at  infinity, yet it is disallowed by Kelvin’s theorem. The circu- 
lation about the contour r = a cannot vary with time, since this would imply 
a many-valued pressure field at r = a. We thus require also that 

The plane wave, incident from infinity at  an angle $(O0 +n) from east, has an 
expanded form appropriate to a circular boundary: 

- 
@$ = exp { - im} exp { i ~ (  y sin Oo + z cos 0,) - @tot} 

or 
00 

@$ = 2 is exp (is(@ - O,,)} J, (w) 
- -m  

(the transformation in (3. I) ,  introduced by Longuet-Higgins, moves the circular 
wave-number locus until it  is centred on the origin). 

The scattered wave & is the solution of (3.1) whose energy moves radially 
outwards: 

m 

$s = I: D, exp (is8) HL2)(Kr). 
--oo 
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The first boundary condition requires that 

co m x exp {is@} (iSJ,(m) exp { - isdo} + DsHL2)(~u))  = A = iSexp {id} J, (KCC) ,  
- m  --m 

or 

A is determined by the second boundary condition: 

0, = ( A  - exp { - is@,)) is( Js/H$2’) (J,  = J, (KU)) . (3.4j 

must therefore sum to zero. That is, 

If we now restrict the size of the island to a small fraction of a wavelength, 

Y < 1  

the lowest two orders of A must be retained: 

A M 1+Y21ny(l-cos8,) (y < 1 ) ;  
substituting in (3.4), 

The dominant modes are s = 0, k 1 giving, to O ( y 2 )  

- in 
$s = exp{ - i ( ~ x + ~ f , t ) }  -p2[ ( i  - COSB,)H~~)(K~) + ~ ( C O S B - C O ~ ( B - B ~ ) H ~ ~ ’ ( K ~ ) ] .  

The orientation of the scattered waves is shown in figure 4. 
The effect of the anisotropy shows up best if we plot scattered energy$ux 

against the angle of the observer from east, with respect to the island. A t  a great 
distance the velocities become 

- 
$,;,. --f - i K (  1 + cos 0) ?F,, 

(1/r>gs, + i~ sin B p,. 
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The largest contribution to ( l / ~ ) g ~ , ~  comes from the travelling modulation, 
exp { - im}. The energy density, normalized to that of the incident wave, is 

(u2 + v2) - i + c o s e  1 $ ~ l 2  

K2(1 +cosB,) I & 12 - 1 +cosB, I & 12 

a i + c o s e  
2 T i+cose, 

= I73 - ( - ) [(1+ cos8,) - ( C O S O +  cos (0-8,))]2, 

8 - Ill/ 

FIanRE 4. Scattered wave-crests about a circular cylinder. The phase velocity 
is directed along the arrows. 

1."""" 

- - - eo= o 8, = i n  8, = 87T 

FIauRE 5. Scattered energy flux for a right circular cylinder as 8 function of angle. 8, is 
the angle of the incident group velocity. (The arrows show the incident phase velocity.) 

8, is the angle of the incident group velocity. The group velocity has magnitude 

2df; 
p( i  + cos e) wf,/westward wave no. = ___-- 

where 0 is its direction. The relative energy flux is therefore just 

[( 1 + cos go) - (cos 0 + cos (8 - B,) )]Z  
F=--" IT12 7.f 

I gi 12 = z y 3 ;  

in the limit KT + 00, which is plotted in figure 5. The scattering is symmetric about 
the direction of the incident phase, forming a weak shadow. F varies greatly 
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with the angle of incidence, even for this simple obstacle. The energy density is 
usually concentrated to the east of the island (the short-wave region), but its 
flux depends also on the variation of group velocity with 8. 

The total scattering cross-section, Q, is the width of a beam of the incident 
wave containing as much energy flux as does the whole scattered wave. In  
problems with homogeneous boundary conditions on the cylinder this can far 
exceed the physical width of the cylinder. 

Here we have 

= 7r2y3( 1 + (cos 8, + 1)2)  a. 

It is formally a small fraction of the width of the island in this limit, although. the 
large numerical factor makes the scattering of some practical interest. 

Non-linear effects would seem, at first sight, to invalidate the solution when y 
is so small that columns of fluid near the island move through distances of order 
a. The advective terms, however, are not necessarily large then. In  fact such 
motion tends to be irrotational, so that the change of vorticity followinga 
particle should be well represented by the linear approximation. 

Although the particle velocities are altered in the presence of the cylinder, 
the sea surface displacement is virtually that of the incident wave, for y .< 1.  
Since 3 is proportional to the surface elevation [to O ( w ) ] ,  the expression for 
@s( N y )  shows this to be true. 
- 

Scattering by a seamount 
The scattering problem for a paraboloidal seamount is similar to that just 
treated. This profile, however, has its own set pf characteristic oscillations which, 
if excited, will persist for many periods. If energy is continuously beamed at  the 
seamount near one of its eigenfrequencies, therefore, we expect unusually large 
amplitudes to arise. The solution is the same as that given by (2.2) but with an 
incident wave, of unit amplitude in r > a. Instead of slow decay of the solution 
with time, there is a steady rate of scattering of the incident energy. 

We set 
- 

$2 = $s + $4 
as before, 

Gi = exp { - im} exp { i ~  (z cos 8, + y sin O,)} 
m 

= isexp{is(8-v,)}Js(kr); k = - 2 ~ ~ 0 s ~ ~ .  

V ,  is the angle of incidence of $$, corresponding to group velocity in the direction 
2(v, -7r) = 8,. The matching equations are no longer homogeneous so that there 
are solutions for all values of the frequency. We have 

-a 

(Hexp {W $1 = $s + $i, 
(HexP{V141,,+ (Wh) = $S,T+$i,T, 

at r = a. With $& absent the equations were separable when the seamount was 
small compared with a Rossby wave, and when the velocities in the different 
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azimuthal (exp {ise}) modes did not decrease in order (in y )  when 1 s I increased 
above unity. At r = a the scattered wave is almost cylindrical, the asymmetric 
modulation exp { - ~ K Z }  having little effect. It must be retained in $i, however, 
where it contributes equally, everywhere. The topographic restoring force 
disappears for isotropic scattering (s = 0) and so this case will be treated 
separately. 

The matching equations yield, for the interior wave amplitudes, 

C, = 2"1+'( - i cos ~ g ) l ~ l + l  (nab)-' 

= O(Y) .  

A is the determinant of the coefficients: 

where J, = Js(ar), Hi') E HL2)(Kr), and J, is replaced by I, when s > 0.  
The scattered wave amplitudes are 

D, = (is exp { - isv,} ( H  exp {S))* ( - 2 cos v0)lsI) 

With y 1, the H, terms are dominated by - i Y,. Unless there is a cancellation 
of these terms (as at resonance), the J, may be neglected. The dominant scatter- 
ing is then from Do, D-,, D,: 

D-, = -n((1+exp{2ivo}) 
a,aJo + 6J ,  

Do, co will be estimated below. 
As S+O these amplitudes vanish, but if only S/w 2 O(1) the scattering 

approaches that due to a cylindrical island. The velocities and T are not greatly 
enhanced by the topography. Although the restoring force there is large, the 
penetration of the wave into r < a is slight. In  fact, the ratio of the maximum 
velocity over the seamount to the typical external velocity is - 1, es, (S/o)'es for 
(S /w) )  small, of order unity, and large, respectively. The 'amplification' varies 
almost linearly with the depth contrast. 

When the incident wave has a frequency near an eigenvalue for the seamount, 
however, the amplitudes become much larger. The Y, terms cancel in the ex- 
pression A, leaving 

$, over the seamount is then - y-lsl, while the scattered waves are - 1. The 
total scattering cross-section is - a/y which is much greater than the width of 
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the seamount. At resonance the separability of the problem breaks down, and 
the neighbouring azimuthal modes will be forced directly by the resonant 
motion, reducing somewhat the resonance effect. 

The isotropic scattering will now be estimated. The topography provides no 
restoring force for this mode, and so it is dominated by the s = f 1 solutions. In  
the interior @ satisfies 

including the p-effect. Assuming 
00 

$1 = $(s)(r)exp{isO} 
-m 

the isotropic balance is then 

relating 1%") weakly to the neighbouring components. Taking the values already 
calculated for +(*I)( E h*@(*l)) we estimate 

The matching to the external field at  r = a of both $(O) and $so) yields only a slight 
modification of the incident wave: 

1 + DOHO = $@), 

DOHO,, = $p. 
The constant in $(O) is unity, and Do is < O(y2( 1 + 6 / w ) }  so that the free surface 
motion over a small seamount will usually be just that of the external wave, 
although the velocities are greatly altered. At resonance of the s = 1 or - 1 
modes, however, Do N 1, and the surface is locally deformed. 

Applications 
In applying the results of this paper to the ocean, several deviations from reality 
must be accounted for. The density stratification will have an effect on the 
eigenfrequencies, but not on the nature of the results. In  addition to the slowly 
leaking barotropic mode there will be a trapped baroclinic motion, on a scale 

where Ap/p is the fractional density difference, in a two-layer model. Problems 
of this nature will be treated in a later paper. 

The most serious aspect that has been neglected is the asymmetry of isolated 
topographic features. One expects intuitively, from listening to various objects 
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being struck or dropped, that a bell (to use Longuet-Higgins’ analogy) is indeed 
an exceptional form. The lower modes may, however, survive by averaging the 
irregularities beneath them, although the sharpness of the resonances should 
surely be reduced. Because Rossby waves are so long the necessity that the topo- 
graphy be isolated on a flat seabed would seem to be unrealistic. The interior 
motions, however, should be insensitive to ‘roughness’ in the exterior, as long 
as it is not comparable in size to 6. 

The scattering due to an island with a skirt is very like that for seamount. The 
displacement of the free surface at  the shore differs from that at  sea by only 0 ( y )  
unless the frequency is nearly resonant. The velocities, however, are strongly 
altered if only S/w 2 1 for a seamount; always for an island. Comparison with 
the results of I shows that Rossby waves will be much more evident near islands, 
than at  a coast (in agreement with recent observations by Wunsch (1967)). 

The resonances are dense (take a vertical section of figure 1, for example), and 
occur for arbitrarily small a (in a scattering problem for gravity waves, on the 
other hand, resonances usually appear only when the topography is as broad as 
an incident wavelength). The response should therefore be shown coherent 
between neighbouring islands before it is identified with a large-scale motion. 
The amplitude of the trapped oscillations will depend on the damping effects of 
radiation, friction, non-linear advection, and asymmetries in the topography. In  
spite of these uncertainties, the decay of such oscillations could be a useful 
measure of turbulent friction in the ocean, since radiation damping should be 
slight. Waves trapped over ridges and shelves might also be used. 

The cumulative importance of small seamounts in a rough region like the 
western Pacific could be great, to Rossby waves short enough that 8 > w, where 
8 is now the root-mean-square topographic height. Some problems with con- 
tinuously varying depth will be considered in a later paper. 

Parts of this work were presented at  the La Jolla I.U.T.A.M. symposium on 
rotating fluid systems, 1966. It was rewritten at M.I.T. under National Science 
Foundation grant GA 1439. 
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